Explorations on the Formal Frontier of Distributed System Design

Martin S. Feather *
USC / Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292, USA
Email: feather@isi.edu

Abstract

The study of distributed system design has tended to
divide into two camps: either very formal methods that
apply to severe abstractions of problems, or human-
intuition-based methods that aid in forming the overall
nature of a system design, but are often disconnected
Jrom the application of formal methods except as post-
hoc verifications.

Herein I explore part of the boundary of formal de-
sign, seeking to apply formal techniques to aid in the
derivation of a distributed design. This is demon-
strated on the rederivation of the train signalling pro-
tocol developed in the 19th century. It was this pro-
tocol that gave rise to the now-familiar concepl of
semaphore. However, a study of the train system
shows that there is much more to its protocol than sim-
ply the instantiation of the semaphore concept.

This ezploration places on a more formal footing
issues such as discovery of the need for information,
and the origin of key invariants, without requiring that
the solution be known in advance.

1 Introduction - the railroad

semaphore

The familiar concept, and name, semaphore, as
used in programming distributed systems, derives
from the use of mechanical signals as part of the train
management protocol developed in the 19th century.
Work on programming language semaphores has ab-
stracted away many of the details of the train problem

*The author has been supported in part by Defense Ad-
vanced Research Projects Agency grant No. NCC-2-520, and
in part by Rome Air Development Center contract No. F30602-
85-C-0221 and F30602-89-C-0103. Views and conclusions con-
tained in this document are those of the author and should not
be interpreted as representing the official opinion or policy of
DARPA, RADC, NSF, the U.S. Government, or any other per-
son or agency connected with them.

0-8186-2880-4/92 $03.00 © 1992 IEEE

T

154

in order to emerge with a conceptual building block
for many of the more complex synchronization prob-
lems common to distributed computer systems. Fickas
and Helm [10] found that the train management pro-
tocol itself is a rich and interesting example of dis-
tributed system design, whose complexity goes well
beyond that of simply instantiating our modern-day
abstract notion of semaphores. They used the problem
as an example of design that they could rationally re-
construct, based on plausible reasoning that took into
account safety and progress goals, interfaces, assign-
ment of tasks to agents, and concerns for possible sys-
tem failures. Their design is founded on a mixture of
petri-nets and planning formalisms which, while suited
to displaying the overall structure of the design, is
somewhat removed from a more formal treatment of
the program design involving semaphores. My pur-
pose in this paper is to (at least partially) bridge the
gap between the formal but highly abstracted world
of semaphores and invariants, and the intuitive but
informal design view of overall system design.

I begin by presenting the solution to the train-
signalling protocol, section 2. This presentation is for
expository purposes — the derivation that follows, sec-
tion 3, does not assume that this solution is known.
Related work and conclusions complete the paper.

2 Train management - the solution!

I now present the solution to the train-signalling
protocol. This solution simplifies from some of the
complexity of the actual train system, as will be ex-
plained shortly.

The essence of the problem is to ensure safe and ex-
pedient movement of trains along a portion of railroad
track. Track is partitioned into what are called blocks,
contiguous segments of track of some 5 to 15 miles
length. Trains move along the track in one direction
only. At the start of each block is a signal. Each sig-

—— Direction of movement

«T . Signal
rain EOperator
H Track

— Block ———p}-¢—— Block ——}t—

Figure 1: Configuration of train signalling system

nal has two possible settings, ‘clear’, indicating that
a train in the preceding block is allowed to enter the
signal’s block, and ‘stop’, indicating that a train in the
preceding block is not allowed to enter. Also at the
start of each block is a station operator who: observes
the entry of trains into that block, controls the setting
of that block’s signal, and communicates information
to the station operator of the preceding block. Figure
2 illustrates this configuration.

The safety condition is that no two trains be in
the same block at the same time - thus avoiding the
danger of a collision. The progress condition is that
trains eventually advance from block to block.

2.1 The protocol of the solution

From an initial configuration in which the safety
condition is satisfied, that is, no two trains are in the
same block, each occupied block’s signal is set to ‘stop’
(to prohibit the entry of another train into that block),
and in which each unoccupied block’s signal is set to
‘clear’, the protocol functions as follows:

At any time, a train in a block may move
into the next block provided that the signal
of that block is set to ‘clear’.

When a train enters a block, the station
operator of that block observes the entry, and
(eventually) performs the following two ac-
tions; first, sets the signal of that block to
‘stop’, then notifies the station operator of
the preceding block of the movement of the
train out of that preceding block.

When a station operator is notified by
the station operator of the next block (of
the movement of a train from that first op-
erator’s block into that next block), he/she
(eventually) performs the action of changing
his/her block’s signal to ‘clear’.

There is one complication in station op-
erator behavior: a station operator may have
observed entry of a train, but before acting to
change the signal and notify the operator of

155

the preceding block, is notified by the next
block’s station operator of train entry (i.e.,
the train has moved on to the next block, and
the operator there has responded to its move-
ment before the operator in this block has
responded to its earlier movement). In this
case, the operator can either serialize his/her
pending actions by first setting his/her signal
to ‘stop’, then notifying the station operator
of the preceding block, and finally changing
his/her signal back to ‘clear’, or may (safely)
optimize this sequence of activity by leaving
the signal in its ‘clear’ position, and simply
notifying the station operator of the preced-
ing block.

2.2 Observations on the solution

There are some subtle aspects to the above proto-
col:

e It is important that the station operator’s re-
sponse to entry of a train is to set his/her block’s
signal to ‘stop’ before (or simultaneously with)
notifying the operator of the preceding block (the
other way around leaves open the possibility that
another train be allowed through before the op-
erator gets around to changing the signal, which
could lead to violation of the safety condition).

e When a station operator receives notification
from the next operator and has yet to respond
to the earlier movement of that train into his/her
own block, it is important that he/she eventu-
ally both notifies the station operator of the pre-
ceding block, and leaves (or changes and changes
back) his/her own block’s signal to ‘clear’. To
act otherwise would lead to deadlock in which no
further trains could get through, either because
some preceding station operator has a signal set
to ‘stop’ and is awaiting notification (which will
now never materialize), or because the current
block’s signal becomes set to ‘stop’, and never
gets changed back to ‘clear’ because no further
notifications will ever come from ahead.

e Some degree of safety in the event of failure is
built into this protocol — if a station operator is
arbitrarily slow, even to the point of not taking
any actions whatsoever, this can lead to deadlock,
but not violation of the safety goal. Of course,
performing incorrect actions can lead to violation
of either goal (e.g., arbitrarily setting a signal to

‘stop’, moving a train past a signal in its ‘stop’
position).

o Finally, it is interesting to note that a block’s sig-
nal being ‘clear’ is not equivalent to that block be-
ing empty; it does not even imply that the block
is empty! In fact, the key to this protocol is the
following invariant:

For any two trains in blocks, there is
always at least one block in front of the
trailing train and at or before the lead-
ing train whose signal is set to ‘stop’.

My goal is to derive this invariant from first prin-
ciples.

2.3 Simplifications of the real-world prob-
lem

The real-world train semaphore protocol uses more
complex signals, with three settings (‘clear’ and ‘stop’,
the two settings outlined above, and ‘caution’, which
warns a train to be prepared to stop), and uses sig-
nals placed not only at the start of a block, but also
some distance ahead of the start of a block. Both
of these elaborations permit better ‘throughput’, tak-
ing into account such real-world considerations such
as inertia (trains cannot decelerate to a stop instanta-
neously, nor can they accelerate to full speed instanta-
neously, hence advance warning of the need, or lack of
the need, to come to a halt can be useful). Presumably
the placement and operation of these signals is justi-
fied by a continuous model of train movement. While
the interplay between such a model and the simpler,
discrete model that I outline is no doubt interesting, I
have not studied it, and this paper does not attempt
to deal with this.

3 (Partial) derivation of the train
semaphore protocol

I now show how to use formal techniques to (at
least partially) derive the train semaphore protocol
from first principles.

3.1 Notation

I adopt a hybrid notation of Dijkstra’s guarded
commands (8] combined with global invariants.
Guarded commands take the form

Jo—s

156

where the guard ¢ is a boolean condition and the body
S is a sequential statement. Both guards and bodies
may refer to global variables. Guards may also in-
troduce local variables, to which their corresponding
bodies may refer. I use set membership binding the
value of a variable to the left of || to denote a set of
guarded commands, one for each possible value of the
variable, e.g.,

xeXUg—>S

denotes a set of guarded commands, one for each ele-
ment of set X; the guard g and body S may use z to
refer to that element.

3.2 Representing trains and blocks

I assume that the T is a set-valued global variable
holding the set of trains present in the system. Like-
wise, B is a set-valued global variable holding the set
of blocks that partition the track; for convenience, con-
secutive blocks are represented as consecutive integers;
trains will always move only in the direction of in-
creasing numbered blocks. The locations of trains are
stored in the global array A; thus the expression A[t]
denotes the block in which train ¢ is located. Simple
behavior of trains is expressed as follows:
te T”true — Alt} .= A[t] + 1 (1)

That is, from the set of trains T', choose any train
t, and move it forward from its current block (the
value of A[t]) to the next block (the value of A[t]+1).
The choice of which train to move is unconstrained,
because the guard is true regardless of the value of t.

Notice that there’s an implicit conditional here,
namely that the train ¢ be located in some block. For
future convenience, I rewrite the above to make this
explicit, thus:

te T3 : Alt] = b) — Alt] := Alf] + 1 @)
or, equivalently, using in the body the value for &
established in the guard:
teT[@b: Alt] = b) — Aft) :=b+1 3)
The safety condition we wish to impose is that no
two trains be in the same block; this is expressed as
an invariant thus:

~ 3yt ity £ s AA[t] = Afto) (4)

3.3 Derivation method

I now apply a well-established method for deriving
the necessary and sufficient conditions on train move-
ment that ensure satisfaction of the invariant express-
ing the safety condition.

Given guarded commands (e.g., those expressing
train movement, as in (3)) together with global in-
variants, there is a method for deriving preconditions
(additional conjuncts on the guards) that ensure sat-
isfaction of those invariants. This method works by
determining, for each guarded command’s body, the
weakest precondition [8] that ensures the state result-
ing from executing that body will satisfy the invari-
ant; together with the requirement that the invariant
is true at the start of execution, this ensures the in-
variant holds throughout execution.

For the guarded commands (3) and invariant (4),
this results in:

teT[@: Al =bA(~ 3t Alta] = b+ 1))

— Aft]:=b+1 (5)
together with a requirement that the invariant (4)
holds initially. In words, a train in some block b can
move to the next block, b + 1, only if that next block
is empty.

This is trivial for us to realize without calculation,
hence the reader may regard this as a case of unnec-
essary formalization. However, as we will see later,
more complex formulae benefit more from this formal
calculation of the weakest preconditions.

The derivation method I am applying is that illus-
trated by Balzer in his transformational derivation of
the 8 queens example [5] (his steps of ‘Unfold con-
straint’ — constraint means invariant — followed by
‘move constraint test ahead of assertion’), and that
applied by Andrews in his derivations of many syn-
chronization problems [1, 2]. The earliest description
I have been able to find of such an approach is that by
Sintzoff [14]; a more complete treatment is presented
by van Lamsweerde and Sintzoff [15].

The details of this derivation method are as follows:

o first, turn the invariant into a requirement on the
initial state, and a postcondition on the body of
every guarded command;

o then, for each such postcondition, calculate the
weakest precondition of that postcondition with
respect to that body, that is, the weakest con-
dition that ensures execution of the body would
lead to satisfaction of the statement;

157

o add this precondition as a conjunct of the guard;

o finally, simplify the precondition in its context, in
particular, taking into account all the invariants
of the program, including the one we are currently
manipulating.

The introduction of postconditions on the above
train example yields

teT[(3b: Alt) = b) — A[t]) := b+ 1 post

(~ Htl,t2 Ztl #tz/\A[tl]:A[tz]) (6)

(writing post to indicate that what follows is a post-
condition of the preceding body). I.e., a train in some
block b can move to the next block, b+ 1, only if af-
ter it has done so there are no two trains in the same
block.

Weakest precondition calculation yields:

teT||(3b:Af)=bA(~ 3t : Al] =b+1)
/\(~ 311,t2 : tl # tg A A[tI] = A[tQ]))

Al =b+1 %)

The conjunct (~ 1,12 : 11 # ta A Aft1] = Alta]) sim-
plifies to true (because it is identical to the invariant
we are ensuring), and the result of this is the guarded
command (5) shown earlier.
3.4 Availability of information

In the physical world, a train in block b cannot
necessarily see into the next block b + 1 to ascertain
whether or not a train is present (recall that blocks are
anywhere from 5 to 15 miles in length). Recasting the
consequences of this into our formalism, this means
that a train in block b cannot evaluate the predicate
(~ 3ty : Alt;] = b+ 1), i.e., the question ‘Is block
b+1 empty?’ I believe that it to be straightforward to
formally represent what a train ‘knows’ directly (e.g.,
atrain ¢ in block b knows directly: the value of A[t], its
own identity, and the configuration of blocks [...b—2,
b—1,b,b+1,...]), and hence to calculate whether a
train knows (i.e., knows directly, or can deduce from
what it knows directly) the value of a predicate such
as (~ 3t; : Afty) = b+ 1). I have not pursued such
reasoning about knowledge; the reader is referred to,
e.g., [L1] for an overview of this kind of work.

Returning to the train’s inability to evaluate the
predicate that guards its action, this we see as a de-
ficiency in the emerging design (following Fickas’ use
of terminology). Such deficiencies motivate the need
for, and choices of, compensatory changes to either
the goals (safety and progress conditions), the capa-
bilities of the the agents (trains) already in the system,

and/or the introduction of new agents. It is a combi-
nation of the latter two that the actual train system
employs — signals are introduced to communicate in-
formation to trains, station operators are introduced
to control the settings of these signals, and train be-
havior is adjusted to react to signal settings. I now
show how the signalling protocol can be semi-formally
derived. This is in contrast to concocting the solution,
and then verifying that it is correct.

First, begin with the problematic predicate that
trains need to evaluate:

(N 3t : A[tI] =b+ 1) (8)

The invention step is to propose the introduction
of some sort of communication mechanism to pass
this information to the train. Encapsulating this as
a predicate (a truth-valued function) called OK, say,
we must ensure the invariant:

Vbe B:OK[B] = (~3t; : Ajt)] = b+ 1) (9)

and, using OK, may re-write train behavior (5) as:
teT[(@b:Alt] = bAOK[b+1]) — Alt] := b+ 1 (10)

Le., a train in some block b can move to the next block,
b+ 1, only if OK[b+ 1] is true.

The intent is to derive a definition of OK, and as-
sociated protocol, that ensures safety and progress.
Ultimately, OK[b] will correspond to block b’s signal
set to ‘clear’, while ~ OK[b] will correspond to block
b’s signal set to ‘stop’.

There are two points to note about the proposed
solution:

o First, if we were to insist that OK be defined as
in (9), then we would need to update OK as a
train moves from one block to the next, namely:

teT[@b: Alt] =bAOK[b+ 1))
— Alt] := b+ 1;0K[b] := true;
OK[b+ 1] := false (11)
(where the three statements to the right of the
‘=’ are to be executed simultaneously). Le., as
a train moves from block b to block b+ 1, set b’s
signal to ‘clear’ (OK[b] := true) because block b
has been vacated and set b 4 1’s signal to ‘stop’
(OK[b + 1] := false) because block b + 1 has
become occupied.

¢ Second, observe that the value of O K [b] is queried
only by a train in block 6—1, and (as far as safety
properties are concerned), it suffices that OK/[b]
implies that block b be empty when queried; thus
a weaker invariant on OK will suffice, namely:

158

VoeB:(3t:AltJ=b6-1)

DOK[B] D (~ 3ty : Alt1] = b) (12)
This permits OK[b] to take any value when
there’s no train in block b — 1.

These two points counterbalance one another; the
first constrains our possible solutions, the second
shows how to relax the natural, but overly-strict, ini-
tial formulation of OK. If we were willing and able to
implement simultaneous updating of OK values with
train movement, our problem would be solved. For a
program running on a single processor, this is a fine
solution. However, for distributed systems (in par-
ticular, the train system), we may wish to distribute
activities across different agents, and thus need to be
more tolerant of interleaving and delay (i.e., simul-
taneity might not be possible). Such is the case in the
actual train system — station operators observe the
entry of trains into their blocks and eventually change
signals, but in no way are these required to be ‘simul-
taneous’ actions. This motivates our next step in the
derivation.

3.5 Separating train movement from sig-
nal setting

We proceed by investigating the possibility of split-
ting train movement from signal setting. We have
the latter done by ‘operators’, one positioned at each
block. The activities can be represented by two (sets
of) guarded commands, as follows:

teT[|(3b: Alt) = bAOK[b + 1))

— Alt] :=b+ 1, E[b+ 1] := true (13)

be Bl]E‘[b] — OK|[b] := false; OK[b — 1} := true;
Eb] := false (14)

E[b] is used to represent the ‘observation’ of the entry
of a train (‘E” for entry) into block b. In (13), when
a train moves into block b + 1, E[b + 1] is simultane-
ously set to true. In (14), the operator of a block, b,
responds to E[b] being true by simultaneously chang-
ing the signal of block, b, to ‘stop’ (OK[b] := false),
the signal of the preceding block, b — 1, to ‘clear’
(OK[b — 1] := true), and discards the ‘observation’
of train entry (E[b] := false).

The danger inherent in splitting a previously atomic
set of actions (11) into two (13) and (14) is that it gives
rise to some new interleavings of behaviors, not all of
which necessarily satisfy our requirements. To deal

with this, we take invariant (12) on OK as needing to
be ensured. Following the same approach to deriving
the necessary and sufficient conditions as was demon-
strated in section 3.3, we find the following result for
train movement:

teT[(: Alt] =bAOK[+1]A
(~OK[b+ 2]V (~ 3ty : Alta] = b+ 2)))
— Alt] :=b+ 1, E{b+ 1] := true (15)

I.e., a train in some block b can move to the next block,
b+ 1, only if b + 1’s signal is ‘clear’ (OK[b+ 1]) and
either b + 2’s signal is ‘stop’ (~ OK[b+2]) or b+ 2 is
empty.
The additional conjunct
(~OK[b+ 2]V (~3ty : Alt2] = b+ 2))
is necessary because prior to train t’s movement into
block b+ 1, it is possible for a train t» to be present
in block b + 2, but that block’s signal not be set to
‘stop’ (which we decided was acceptable provided that
no train was in the preceding block, b + 1); however,
before block b+2’s signal is changed to ‘stop’, the train
t, having moved into b+ 1, might move again into b+2
and collide with the train t, still there. Fortunately,
the method derives the necessary precondition, thus
saving us the task of discovering this possibility for
ourselves (this being a somewhat plausible example
of something that it is a little tricky for us to think
through without the aid of a formal technique).
What this suggests is that we strengthen the invari-
ant (12) on OK to be:

Vbe B:(3t: Alt]=b-1)
S OK[b) D ((~ 3ty : A[t1] = b)
A((~ OK[b + 1))
V(~ 3ty : Altg] = b+ 1))
(16)

and use this new version of OK to control train move-
ment, as before:

teT] (@b : Al = bAOK[b+ 1))

— At :=b+ 1L, E[b+ 1] := true (17)

namely the same as equation (13), but now relying
upon a strengthened definition of OK.

Repeating the derivation process by finding the
preconditions on (17) that ensure satisfaction of the
strengthened invariant (16) lead to addition of yet an-
other conjunct onto the definition of OK{[b], requir-
ing that block b + 2 be empty or that at least one
of the signals on blocks b + 1 or & + 2 to be in the
‘stop’ state. This process can be applied over and
over again: strengthen the invariant further, do the
derivation of precondition with new invariant ... This

159

is where I apply insight to realize that the general-
ization of the invariant, towards which this process is
iteratively converging, is the following:

Vby1,bs € B : by < ba A3ty,12 ZA[t1] =b /\A[tg] = by
S3beB b <b<ba~OKp (18)

That is, the very invariant that lies at the heart of the
train signalling protocol:

For any two trains in blocks, there is al-
ways at least one block in front of the trailing
train and at or before the leading train whose
stgnal is set to ‘stop’.

Remark: this process of iteratively calculating the
guard, and generalizing if need be, corresponds to the
method in [15] where weak correctness of a set of
guarded commands is calculated as the limit of the
chain of successive approximations, applying general-
ization in the case of an infinite such chain.

3.6 Added safety

Note that once we have identified the key invariant,
it is easy to postulate further variations, for example,
it might make for increased safety to always have at
least two signals set to ‘stop’ between any two trains.
This is illustrative of a beneficial side-effect of this
derivational style of development — the stages that it
goes through can serve as points of divergence in the
space of possible designs.

3.7 Controlling OK (the signals)

The previous section ‘unfolded’ the invariant rep-
resenting the safety condition into the guarded com-
mand expressing train movement. There remains the
task of similarly unfolding it into the guarded com-
mand (14) expressing signal setting (changes to OK
values).

The same formal process, making the invariant a
postcondition, computing the weakest precondition,
and (some) simplification, produces:

be B Et]
/\(~ 3t1,t2,b1 : A[tl] =b-1
/\A[tz] = by
Aby <b—1

/\(~3b3:b2<b3<b—1
A ~ OK[b3]))
— OK[b] := false; OK[b — 1] := true;

E[b)] := false (19)

Le., the operator of block b reacts when E[b] holds
and there’s not: a train ¢; at b — 1, a train t, at b,
somewhere before b — 1, and no intermediate signal
before b — 1 set to ‘stop’. This complicated condition
ensures that b — 1’s signal is not the only signal set
to ‘stop’ between a train at & — 1 and an earlier train
(since if it were the only such signal, it would not be
safe to change it to ‘clear’).

It is possible (but not trivial) to show that there
cannot be a train present in block b—1 while E[b] holds
(essentially, E[b] = true arose from the movement of a
train from b—1 into b, and until b’s operator responds,
there must be some signal set to ‘stop’ at or before
b — 1 that is preventing another train from moving
into b — 1), hence the added clause simplifies to true,
and the above reduces back to (14), namely:

be BI] E[b] — OK[b) := false; OK[b — 1] := true;
E[b] := false

3.8 Ensuring Progress - a sketch

We now turn briefly to the progress goal, which
is: all trains eventually advance from block to block.
Stated in temporal logic terms:

VieT:(Ib:Alt]=bD CAlt)=b+1) (20)

(where < is the symbol conventionally used to denote
‘eventually’).

Since our derived guarded command that advances
trains (17) has the guard (3b : A[t] = bAOK[b + 1)),
this implies that

Vi€ T:(3b: Alt] = b > COK[b+ 1)) (21)

It is this that drives the derivation of the neces-
sary synchronization between station operators. As
expressed so far, this means that an operator at block
b must react to passage of a train (an E[b] condition)
before the operator at block b + 1 reacts to E[b + 1]
if the train moves on (the other way around leads to
deadlock, because b + 1’s operator’s reaction is to set
OK[b] to true [which it already is], then b’s operator
sets it to false, after which it will never get reset to
true!)

In fact, to get to the actual train system solution,
it is necessary to make another split; in the physical
system, the station operator at block b is unable to
directly change the setting of the signal at block b ~ 1;
instead, he/she notifies the operator of block b — 1,
who then (eventually) reacts by changing the signal
setting.

This step is very similar to the split of train move-
ment from signal setting — what was a simultaneous

160

activity done by a single agent becomes two activities,
each done by separate agents. This necessitates recon-
sideration of the safety and progress goals to ensure
that any new interleavings that violate either of these
goals are eradicated. For brevity, I do not go through
this development.

4 Related work

I have been greatly influenced by the early work
of my colleagues who established the principles for,
and then designed a specification language in which
systems are easily specified by stating the capabilities
of their components as nondeterministic choice of ac-
tions, constrained by the separately stated invariants
(6].

The field of program transformation studies the
derivation of implementations from specifications
(e.g., {13]). This is the approach I seek to apply to
distributed programs.

[7] is a representative sampling of formal work on
distributed system design. In particular, [4] and [3}
use weakest preconditions to justify the stepwise re-
finement of programs. As stated earlier, {15] gives a
treatment of deriving guards on sets of guarded com-
mands.

My study of the train example is inspired by [10],
the focus of which is the issues that surround the de-
sign of composite systems — interfaces, division of
tasks among multiple agents, and the like — and pro-
viding a framework in which to capture the results
of human reasoning, partially assisted by mechanical
reasoners. The work reported in [12] is at a similar
level of concern.

5 Conclusions

My claim is that the train example illustrates how
formal techniques can be applied in distributed sys-
tem design. Its safety and progress goals can be suc-
cinctly stated as invariants that implicitly constrain
a non-deterministic statement of the system’s possi-
ble actions. The necessary and sufficient conditions
on those actions can then be derived by a process of
‘unfolding’ the constraints, weakest precondition cal-
culation, and simplification.

This particular example is interesting in that it also
involves the generalization of an invariant as a con-
clusion of applying the derivation process iteratively.
In a sense, this discovers the key invariant behind the

train system protocol (admittedly, I had to apply some
insight to make the generalization, but it seemed a
small step at that point). The need to accommodate
real-world aspects such as availability of information
and the division of tasks among multiple agents fits
smoothly into the framework.

My derivation mixes mundane calculations (e.g.,
weakest precondition calculations of straight-line pro-
grams segments) that are eminently suited to mech-
anization, with steps that appear to require more in-
tuitive guidance (e.g., splitting train movement apart
from operator response to that movement). This sug-
gests the opportunity to aid a human designer with a
mechanical assistant capable of performing the mun-
dane calculations automatically (and under its own
initiative), and relying upon human guidance to per-
form the intuitive steps. Our previous investigations
of system design [9] suggest that it is feasible to ac-
cumulate a set of techniques capable of generating the
space of possible designs, but that the task of selecting
among those designs requires large amounts of knowl-
edge and insight, and hence, given the present state of
the art, best left under the control of a skilled designer.

Acknowledgements

I have benefited from many discussions with Steve
Fickas and his group at the University of Oregon, Eu-
gene, on the subjects of design, distributed systems,
and the like. Bob Balzer’s Software Sciences Division
here at ISI, of which I am a member, has for a long
time studied the approach of derivation from speci-
fication, which motivates this current paper’s explo-
rations.

References

[1] G.R. Andrews. A method for solving synchroniza-
tion problems. Science of Computer Program-
ming, 13(1):1-21, December 1989.

[2] G.R. Andrews. Concurrent Programming Princi-

ples and Practice. Benjamin/Cummings, 1991.

[3] R.J.R. Back. Refinement calculus, part ii: Paral-

lel and reactive programs. In Stepwise Refinement

of Distributed Systems, pages 67-93. Springer-

Verlag, 1990.

[4] R.J.R. Back and J. von Wright. Refinement cal-

culus, part i: Sequential nondeterministic pro-

161

(10]

(11]

[12]

(13]

(14]

grams. In Stepwise Refinement of Distributed
Systems, pages 42—-66. Springer-Verlag, 1990.

R. Balzer. Transformational implementation: An
example. In New Paradigms for Software Devel-
opment, pages 227-238. IEEE Computer Society
Press, 1986. Originally published in IEEE TSE
SE-7(1) Jan 1981 pages 3-14.

R. Balzer and N. Goldman. Principles of good
software specification and their implications for
specification languages. In Specification of Reli-
able Software, pages 58—67. IEEE Computer So-
ciety, 1979.

J.W. de Bakker, W.-P. de Roever, and G. Rozen-
berg, editors. Stepwise Refinement of Distributed
Systems, volume 430 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1990.

E.W. Dijkstra. A discipline of programming.
Prentice Hall, Englewood Cliffs, NJ, 1976.

M.S. Feather, S. Fickas, and B.R. Helm. Com-
posite system design: the good news and the
bad news. In Proceedings of the 6th Annual
RADC Knowledge-Based Software Engineering
(KBSE) Conference, Syracuse, NY, Seplember
1991, pages 16-25. IEEE Computer Society
Press, 1991.

S. Fickas and B.R. Helm. Knowledge represen-
tation and reasoning in the design of composite
systems. IEEE Transaclions on Software Engi-
neering, 18(6):470-482, June 1992.

J.Y. Halpern. Reasoning about knowledge: an
overview. In J.Y. Halpern, editor, Theoretical As-
pects of Reasoning About Knowledge: Proceedings
of the 1986 Conference, Monterey, CA, pages 1-
17. Morgan Kaufmann, 1986.

J. Kramer, J. Magee, and A. Finkelstein. A con-
structive approach to the design of distributed
systems. In Proceedings of the 10th IEEE In-
ternational Conference on Distributed Computing
Systems, Paris, 1990.

B. Moeller, editor. Proceedings of the IFIP TC2
Working Conference on Constructing Programs
from Specifications, Pacific Grove, CA, USA.
North-Holland, 1991.

M. Sintzoff. Eliminating bling alleys from back-
track programs. In Automata Languages and Pro-
gramming 3, pages 531-557. Edinburgh Univer-
sity Press, 1976.

[15] A. van Lamsweerde and M. Sintzoff. Formal
derivation of strongly correct concurrent pro-
grams. Acta Informatica, 12:1-31, 1979.

162

